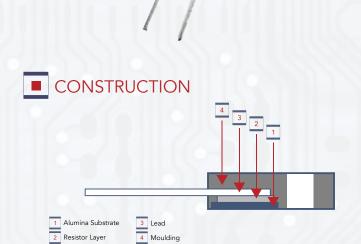
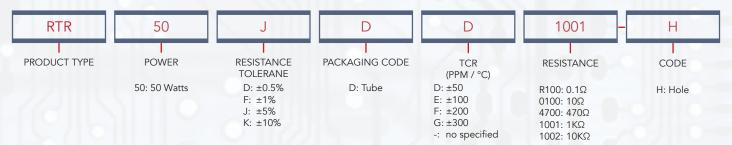
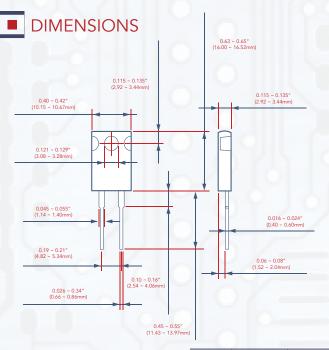
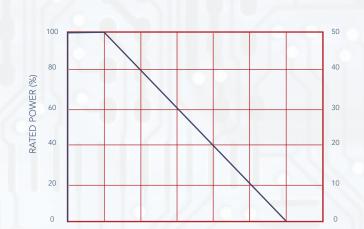
T0-220 POWER RESISTOR


- RTR50-H SERIES -

FEATURES


- 50 watts at 25°C case temperature.
- T0-220 style power package
- Single screw mounting to heat sink
- Molded case for protection and easy to mount
- Electrically isolated case
- Non-Inductive design


APPLICATIONS


- Gate Resistors in Power Supplies
- Snubbers
- Load and Dumping in Resistors in CRT Monitors
- Automated Machine Controller
- Terminal Resistance in RF Power Amplifiers
- Low Energy Pulse Loading
- UPS
- Voltage Regulation

PART NUMBERING

DERATING CURVE

TYPE	WEIGHT (G) (1000 PCS)	PACKAGING TUBE	
RTR050	1290	50 PCS	

CASE TEMPERATURE (°C)

ELECTRICAL CHARACTERISTICS SPECIFICATIONS

ITEM	RESISTANCE RANGE				TCR
TYPE	±0.5%	±1%	±5%	±10%	(PPM/°C)
	7-11-	0.05Ω - 1Ω			Not Specified
		> 1Ω - 3Ω			±300
RTR050		> 3Ω - 10Ω			±100 ±200
	> 10Ω - 10ΚΩ				±50 ±100 ±200
	> 10ΚΩ - 1ΜΩ				±200 ±300

- Operating Voltage: 420 V Max

- Dielectric Strength: 1800VAC

- Insulation Resistance: $10G\Omega$ min.

- Operating Temperature Range: -65°C to +150°C

ENVIRONMENTAL CHARACTERISTICS

ITEM	REQUIREMENT	TEST METHOD
Temperature Coefficient of Resistance (T.C.R.)	As Spec.	Referenced to 25°C, DR taken at +105°C
Short Time Overload	ΔR ± 0.3%	2 times rated power with applied voltage not to exceed 1.5 times maximum continuous operating voltage for 5 seconds
Load Life	ΔR ± 1.0%	2,000 hours at rated power
Damp Heat with Load	ΔR ± 0.5	40±2°C, 90~95% R.H., RCWV for 1000 hrs with 1.5 hrs "ON" and 0.5 hrs "OFF"
Solderability	90% min coverage	245±5°C for 3 seconds
Thermal Shock	ΔR ± 0.3%	-65°C ~150°C, 100 cycles
Terminal Strength	ΔR ± 0.2%	(Pull Test) 2.4N
Vibration, High Frequency	ΔR ± 0.2%	20g peak

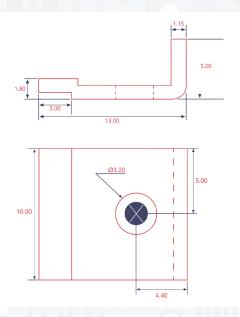
- Lead Material: Tinned Copper
- Maximum Torque: 0.9N-m
- When in Free Air at 25°C, the RTR50-H is Rated for 3W.
- The Case Temperature is to be used for the Definition of the Applied Power Limit.
- The Case Temperature Measurement Must be Made with a Thermocouple Contacting the Center of the Component Mounted on the Designed Heat Sink.
- Thermal Grease Should be Applied Properly.
- Storage Temperature: 25±5°C; Humidity: < 75%RH

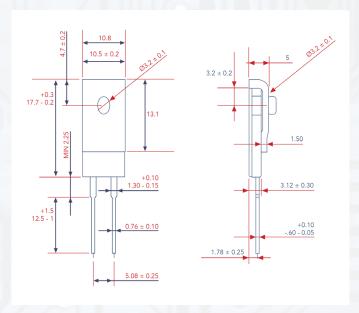
INSTALLATION INSTRUCTIONS

- There will be gaps in the fit between the plastic-encapsulated resistor and the heat sink. These voids will greatly degrade the performance of TO220 plastic package resistors. Therefore, it is important to fill these voids with a thermal interface material. Several materials reduce the thermal resistance between the resistor and the surface of the heat sink.

THERMAL GREASE

- Thermal grease is a combination of thermally conductive particles and liquid grease. Thermal greases usually contain silicone oil in their fluid, but there are much better "non-silicon" thermal greases available. Thermal grease has been used for many years and generally has the lowest thermal resistance of all available thermal materials.




■ INSTALLATION INSTRUCTIONS

THERMAL PADS

- Thermal pads, which can replace thermal paste, there are many thermal pad manufacturers on the market. These thermal pads are available as solid sheets or pre-cut in various standard design package shapes such as TO-220 and TO-247. When the thermal pad sponge material is mounted, the pressure needs to be consistent and even to effectively exert the performance of the thermal pad.
- * Do not let the screw head touch the plastic resistor body. Use flat or tapered washers to evenly distribute force
- * Avoid using flat head screws to avoid burrs with sharp edges on the screw heads that could damage the heat sink
- * Do not over torque the screws. If the screw is over tightened, it may cause cracks or the screw head may slip. Air tools are not recommended.

SHEET METAL / CLIP DIMENSIONS

SHEET METAL / CLIP - PART NO: SMC001

- Mounting Clip is provided with the reisitor at no additional cost.
- Mounting screw and heatsink are not provided.
- Customer is responsible if resistor is damaged by other mounting methods.

