MULTILAYER CERAMIC CAPACITORS - GUO SERIES - ULTRA HIGH Q \& LOW ESR SERIES -
 - INTRODUCTION

- MLCC Consists of a conducting material and electrodes. To manufacture a chip-type SMT and achieve miniaturization, high density and high efficiency, ceramic condensers are used.
- Cal-Chip GUQ series MLCC is used at high frequencies and generally have a small temperature coefficient of capacitance, typical within the +/-30ppm/C required for NPO (COG) classification and have excellent conductivity internal electrode. Thus, Cal-Chip GUQ
- CONSTRUCTION AND DIMENSIONS

$\underset{(M M)}{\text { SIZE INCH }}$	$\stackrel{\llcorner }{\text { L }}$	$\begin{gathered} \text { W } \\ \text { (MM) } \end{gathered}$	$\stackrel{\top}{(\mathrm{MM}) / \mathrm{SYMBOL}^{-}}$		REMARK	Mb (MM)
1005 (0402)	0.40 ± 0.02	0.20 ± 0.02	0.20 ± 0.02	V	\#	0.10 ± 0.03
0201 (0603)	0.60 ± 0.03	0.30 ± 0.03	0.30 ± 0.03	L	\#	0.10 ± 0.03
0402 (1005)	1.00 ± 0.05	0.50 ± 0.05	0.50 0.05	N	\#	0.25+0.05/-0.10
0603 (1608)	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.07	S		0.40 ± 0.15
	1.60+0.15/-0.10	0.80+0.15/-0.10	0.50 ± 0.10	H		
0805 (2012)	2.00 ± 0.15	1.25 ± 0.10	0.60 ± 0.10	A		0.50 ± 0.20
		1.25 ± 0.20	0.85 ± 0.10	T		
0505 (1414)	$1.40+0.38 /-0.25$	1.40 ± 0.38	1.15 ± 0.15	J	\#	0.25+0.25/-0.13
1111 (2828)	$1.40+0.38 /-0.25$	2.79 ± 0.38	≤ 1.78	G	\#	0.38 ± 0.25

\#Reflow soldering only is recommended
\square ORDERING INFORMATION

- High Q and low ESR performance at high frequency
- Ultra low capacitance to 0.1 pF
- Can offer high precision tolerance to $\pm 0.05 \mathrm{pF}$
- Quality improvement of telephone calls for low power loss and better performance

■ APPLICATIONS

- Telecommunication products \& equipments: Mobile phone, WLAN, Base station
- RF module: Power amplifier, VCO
- Tuners

NO.	NAME		NPO
1	Ceramic Material		High Q Dielectric Ceramic
2	Inner Electrode		Cu
3	Termination	Inner Layer	Cu
4		Middle Layer	Ni
5		Outer Layer	Sn (Matt)

ELECTRICAL SPECIFICATIONS

DIALECTRIC	NPO
SIZE	$01005,0201,0402,0505,0603,0805,1111$
CAPACITANCE RANGE	0.1 pF to 1000 pF
CAPACITANCE TOLERANCE	$\mathrm{Cap}<10 \mathrm{pF}: ~ \mathrm{~A}(\pm 0.05 \mathrm{pF}), \mathrm{B}(\pm 0.1 \mathrm{pF}), \mathrm{C}(\pm 0.25 \mathrm{pF}), \mathrm{D}(\pm 0.5 \mathrm{pF})$ $\mathrm{Cap} \geq 10 \mathrm{pF}: \mathrm{F}(\pm 1 \%), \mathrm{G}(\pm 2 \%), \mathrm{J}(\pm 5 \%)$
RATED VOLTAGE (WVDC)	$6.3 \mathrm{~V}, 10 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 200 \mathrm{~V} 250 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$
TAN δ	$01005,0201,0402 / 25 \mathrm{~V} \sim 50 \mathrm{~V}: \mathrm{Cap}<30 \mathrm{pF:Q} \geq 400+20 \mathrm{C} ; \mathrm{Cap} \geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$ $0402 / 100 \mathrm{~V} \sim 200 \mathrm{~V}, 0603,0805,0505,111: \mathrm{Cap}<30 \mathrm{pF}: \mathrm{Q} \geq 800+20 \mathrm{C} ; \mathrm{Cap} \geq 30 \mathrm{pF}: \mathrm{Q} \geq 1400$
INSULATION RESISTANCE AT UR	$\geq 10 \mathrm{G} \Omega$ or RxC $\geq 100 \Omega-\mathrm{F}$ whichever is smaller
OPERATING TEMPERATURE	$-55 \mathrm{TO}+125^{\circ} \mathrm{C}$
CAPACITANCE CHARACTERISTIC	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
TERMINATION	Ni/Sn (lead-free termination)

* Measured at the condition of $25^{\circ} \mathrm{C}$ ambient temperature and $30 \sim 70 \%$ related humidity.

Apply $1.0 \pm 0.2 \mathrm{Vrms}, 1.0 \mathrm{MHz} \pm 10 \%$ for Cap $\leq 1000 \mathrm{pF}$ and $1.0 \pm 0.2 \mathrm{Vrms}, 1.0 \mathrm{kHz} \pm 10 \%$ for Cap $>1000 \mathrm{pF}$.

- ELECTRICAL SPECIFICATIONS

SIZE	THICKNESS $(M M) /$ SYMBOL		P" REEL	PAPER TAPE
	0.20 ± 0.02	V	20 k	$13^{\prime \prime}$ REEL
$1005(0402)$	L	15 k		
$0201(0603)$	0.30 ± 0.03	N	10 k	70 k
$0402(1005)$	0.50 ± 0.05	J	3 k	50 k
$0505(1414)$	1.15 ± 0.15	S	4 k	
$0603(1608)$	0.80 ± 0.07	H	4 k	
$0603(1608)$	0.50 ± 0.10	A	4 k	15 k
$0805(2012)$	0.60 ± 0.10	T	4 k	15 k
$0805(2012)$	0.85 ± 0.10	G	3 k	
$1111(2828)$	1.78			

－CAPACITANCE RANGE

DIELE	CTRIC												PO									
									505							060						
rated voind	oltage	16	25	${ }^{6.3}$	10	25	50	50	100	250	25	50	100	200	50	100	250	50	100	250	500	TOLERANCE
6．0pF	6RO	V	V	L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．1pF	$6 \mathrm{R1}$			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6.2 pF	6R2	V		L	L	L	L	J	j	J	N	N	N	N	S	s	S	T	T	T	T	A，B，C，D
6．3pF	6R3			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．4pF	6 R 4			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．5pF	6R5			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．6pF	6R6			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6.7 pF	$6 \mathrm{R7}$	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．8pF	6 R 8	V		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
6．9pF	6R9			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．0pF	7R0	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．1pF	7R1			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．2pF	7R2			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．3pF	7R3			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．4pF	7R4			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．5pF	7R5	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．6pF	7R6			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．7pF	7R7			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．8pF	7R8			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
7．9pF	7R9			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．0pF	8R0	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．1pF	$8 \mathrm{R1}$			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．2pf	8R2	v		L	L	L	L	J	J	J	N	N	N	N	S	s	S	T	T	T	T	A，B，C，D
8．3pF	8R3			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．4pF	8R4			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．5pF	8R5			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．6pF	8R6			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．7pF	8 7 7			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．8pF	8R8			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
8．9pF	8R9			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．0pf	9R0	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9.1 pf	9 P 1	v		L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．2pF	9R2			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．3pF	9R3			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9.4 pF	9R4			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．5pF	9R5			L	L	L	L	J	J	J	N	N	N	N	S	S	s	T	T	T	T	A，B，C，D
9.6 pF	9R6			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．7pF	9 P 7			L	L	L	L	J	J	J	N	N	N	N	S	s	s	T	T	T	T	A，B，C，D
9．8pF	9R8			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
9．9pF	9R9			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	A，B，C，D
10pF	100	v	V	L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
11pF	110			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
12pF	120	v	v	L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
13pF	130			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
15pF	150	v	V	L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
16pF	160			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
18pF	180			L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
20pF	200	v	V	L	L	L	L	J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
22pF	220	v	v	L	L	L		J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
24pF	240			L	L	L		J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
27pF	270			L	L	L		J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
30pF	300			L	L	L		J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
33pF	330			L	L	L		J	J	J	N	N	N	N	S	S	S	T	T	T	T	F，G，J
36pF	360							J	J	J	N	N	N		S	S	S	T	T	T	T	F，G，J
39pF	390							J	J	J	N	N	N		S	S	S	T	T	T	T	F，G，J
43pF	430							J	J	J	N	N	N		S	S	S	T	T	T	T	F，G，J
47pF	470							J	J	J	N	N	N		S	S	S	T	T	T	T	F，G，J
56pF	560							J	J	J	N	N	N		S	S	s	T	T	T	T	F，G，J
68pF	680							J	J	J	N	N			s	S	S	T	T	T	T	F，G，J
82pF	820							J	J	J	N	N			S	S	S	T	T	T		F，G，J
100pF	101							J	J	J	N	N			S	S	S	T	T	T		F，G，J
120pF	121																	T	T	T		F，G，J
150	151																	T	T	T		F，G，J
180	181																	T	T	T		F，G，J
220	221																	T	T	T		F，G，J

DIELECTRIC		NPO						
SIZE		1111						TOLERANCE
RATED VOLTAGE		50	100	200	250	500	1500	
1.0pF	1R0	G	G	G	G	G	G	A, B, C
1.1 pF	1R1	G	G	G	G	G	G	A, B, C
1.2pF	1R2	G	G	G	G	G	G	A, B, C
1.3 pF	1 R3	G	G	G	G	G	G	A, B, C
1.5 pF	1 R 5	G	G	G	G	G	G	A, B, C
1.6 pF	1 R 6	G	G	G	G	G	G	A, B, C
1.8pF	1R8	G	G	G	G	G	G	A, B, C
2.0pF	2R0	G	G	G	G	G	G	A, B, C
2.2pF	2R2	G	G	G	G	G	G	A, B, C
2.4pF	2R4	G	G	G	G	G	G	A, B, C
2.7 pF	2R7	G	G	G	G	G	G	A, B, C
3.0pF	3R0	G	G	G	G	G	G	A, B, C
3.3 pF	3R3	G	G	G	G	G	G	A, B, C
3.6 pF	3R6	G	G	G	G	G	G	A, B, C
3.9 pF	3R9	G	G	G	G	G	G	A, B, C
4.0pF	4R0	G	G	G	G	G	G	A, B, C
4.3 pF	4R3	G	G	G	G	G	G	A, B, C
5.0pF	5RO	G	G	G	G	G	G	A, B, C
5.1 pF	5R1	G	G	G	G	G	G	B, C, D
5.6pF	5R6	G	G	G	G	G	G	B, C, D
6.0pF	6R0	G	G	G	G	G	G	B, C, D
6.1 pF	6R1	G	G	G	G	G	G	B, C, D
6.8 pF	6R8	G	G	G	G	G	G	B, C, D
7.0pF	7R0	G	G	G	G	G	G	B, C, D
8.0pF	8R0	G	G	G	G	G	G	B, C, D
8.2pf	8R2	G	G	G	G	G	G	B, C, D
10 pF	100	G	G	G	G	G	G	F, G, J
12pF	120	G	G	G	G	G	G	F, G, J
15 pF	150	G	G	G	G	G	G	F, G, J
18pF	180	G	G	G	G	G	G	F, G, J
22pF	220	G	G	G	G	G	G	F, G, J
27 pF	270	G	G	G	G	G	G	F, G, J
33 pF	330	G	G	G	G	G	G	F, G, J
39 pF	390	G	G	G	G	G		F, G, J
47 pF	470	G	G	G	G	G		F, G, J
56 pF	560	G	G	G	G	G		F, G, J
68 pF	680	G	G	G	G	G		F, G, J
82pF	820	G	G	G	G	G		F, G, J
100pF	101	G	G	G	G	G		F, G, J
120pF	121	G	G	G	G	G		F, G, J
150	151	G	G	G	G	G		F, G, J
180	181	G	G	G	G	G		F, G, J
220	221	G	G	G	G	G		F, G, J
220pF	221	G	G	G	G	G		F, G, J
270pF	271	G	G	G	G	G		F, G, J
330 pF	331	G	G	G	G	G		F, G, J
390 pF	391	G	G	G	G	G		F, G, J
470pF	471	G	G	G	G	G		F, G, J
560pF	561	G	G	G	G	G		F, G, J
680pF	681	G	G	G	G	G		F, G, J
820pF	821	G	G	G	G	G		F, G, J
1000pF	102	G	G	G	G	G		F, G, J

Fig. 2 ESR vs. Frequency (0201 size)

－ELECTRICAL CHARACTERISTICS

NO.	ITEM	TEST CONDITION	REQUIREMENTS
1.	Visual and Mechanical	---	- No remarkable damage. - Dimensions to conform to individual specification sheet.
2.	Capacitance		- Shall not exceed the limits given in the detailed spec.
3.	Q/D.F (Dissipation Factor)	$-1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{MHz} \pm 10 \%$ - Test temp.: Room Temperature.	```- 01005, 0201, 0402/25V~50V: Cap \(<30 \mathrm{pF}: \mathrm{Q} \geq 400+20 \mathrm{C}\); Cap \(\geq 30 \mathrm{pF}, \mathrm{Q} \geq 1000\) - 0402/100V~200V, 0603, 0805, 0505, 1111: Cap \(<30 \mathrm{pF}: \mathrm{Q} \geq 800+20 \mathrm{C}\); \(\mathrm{Cap} \geq 30 \mathrm{pF}: \mathrm{Q} \geq 1400\)```
4.	Dielectric Strength	- To apply voltage: $\leq 100 \mathrm{~V}$: 250% of rated voltage. 200 V ~ 300V : 200\% of rated voltage. 500 V ~ 999V : 150\% of rated voltage. 1000 V ~ 3000V : 120\% of rated voltage. 4000V : 110% of rated voltage. - Duration: 1 to 5 sec . - Charge \& discharge current less than 50mA.	-No evidence of damage or flash over during test.
5.	Insulation Resistance	- Test temp.: Room Temperature. $\leq 100 \mathrm{~V}$: To apply rated voltage for max. 120 sec . $\geq 200 \mathrm{~V}$:To apply rated voltage (500 V max.) for 60 sec .	- $\geq 10 \mathrm{G} \Omega$ or $\mathrm{RxC} \mathrm{C} \geq 100 \Omega$-F whichever is smaller
6.	Temperature Coefficient	- With no electrical load. - Operating temperature: NPO: $-55 \sim 125^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$	- Capacitance change: within $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
7.	Adhesive Strength of Termination	- Pressurizing force: 01005: 1N 0201: 2N 0402 to 0603: 5 N >0603 : 10 N - Test time: $10 \pm 1 \mathrm{sec}$.	- No remarkable damage or removal of the terminations.
8.	Vibration Resistance	- Vibration frequency: $10 \sim 55 \mathrm{~Hz} / \mathrm{min}$. - Total amplitude: 1.5 mm - Test time: 6 hrs. (Two hrs each in three mutually perpendicular directions.) - Cap./DF(Q) Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for 24 ± 2 hrs at room temp.	- No remarkable damage - Cap change and Q/D.F.: To meet initial spec
9.	Solderability	- Solder temperature: $235 \pm 5^{\circ} \mathrm{C}$ - Dipping time: $2 \pm 0.5 \mathrm{sec}$.	- 95\% min. coverage of all metalized area.
10.	Bending Test	- The middle part of substrate shall be pressurized by means of the pressurizing rod at a rate of about 1 mm per second until the deflection becomes 1 mm and then the pressure shall be maintained for $5 \pm 1 \mathrm{sec}$. - Measurement to be made after keeping at room temp. for 24 ± 2 hrs.	- No remarkable damage. - Cap change: within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger. - Q/D.F., I.R. and dielectric strength: To meet initial requirements. -25% max. leaching on each edge.
11.	Resistance to Soldering Heat	- Solder temperature: $260 \pm 5^{\circ} \mathrm{C}$ - Dipping time: $10 \pm 1 \mathrm{sec}$ - Preheating: 120 to $150^{\circ} \mathrm{C}$ for 1 minute before immerse the capacitor in a eutectic solder. - Cap. / DF(Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	- No remarkable damage. - Cap change: within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger. - Q/D.F., I.R. and dielectric strength: To meet initial requirements. -25% max. leaching on each edge.
12.	Temperature Cycle	- Conduct the five cycles according to the temperatures and time. - Cap./DF (Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for 24 ± 2 hrs at room temp.	- No remarkable damage. - Cap change:within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger. - Q/D.F., I.R. and dielectric strength: To meet initial requirements.
13.	Humidity (Damp Heat) Steady State	Test temp.: $40 \pm 2^{\circ} \mathrm{C}$ - Humidity: 90~95\% RH - Test time: 500+24/-Ohrs. - Cap. / DF(Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for 24 ± 2 hrs at room temp.	- No remarkable damage. - Cap change: within $\pm 5.0 \%$ or $\pm 0.5 \mathrm{pF}$ whichever is larger. - Q/D.F. value: Cap $\geq 30 \mathrm{pF}, \mathrm{Q} \geq 350$; $10 \mathrm{pF} \leq \mathrm{Cap}<30 \mathrm{pF}, \mathrm{Q} \geq 275+2.5 \mathrm{C}$ Cap $<10 \mathrm{pF} ; \mathrm{Q} \geq 200+10 \mathrm{C}$ - I.R.: $\geq 1 \mathrm{G} \Omega$.

NO.	ITEM	TEST CONDITION	REQUIREMENTS		
14.	Humidity (Damp Heat) Load	- Test temp.: $40 \pm 2^{\circ} \mathrm{C}$ - Humidity: 90~95\%RH - Test time: $500+24 /-0$ hrs. - To apply voltage:rated voltage (MAX. 500V) - Cap. / DF(Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp	- No remarkable damage. - Cap change: within $\pm 7.5 \%$ or $\pm 0.75 \mathrm{pF}$ whichever is larger. - Q/D.F. value: Cap $\geq 30 p F, Q \geq 200$; Cap<30pF, $\mathrm{Q} \geq 100+10 / 3 \mathrm{C}$ - I.R.: $\geq 500 \mathrm{M} \Omega$.		
15.	High Temperature Load (Endruance	- Test temp.: NPO: $125 \pm 3^{\circ} \mathrm{C}$ - To apply voltage: (1) $10 \mathrm{~V} \leq \mathrm{Ur}<500 \mathrm{~V}$: 200% of rated voltage. (2) $\leq 6.3 \mathrm{~V}$ or $500 \mathrm{~V}: 150 \%$ of rated voltage. (3) Ur $\geq 630 \mathrm{~V}: 120 \%$ of rated voltage. - Test time: 1000+24/-0 hrs. - Cap. / DF(Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp	- No remarkable damage. - Cap change: within $\pm 3.0 \%$ or $\pm 0.3 p F$ whichever is larger. - Q/D.F. value: Cap $\geq 30 \mathrm{pF}, \mathrm{Q} \geq 350$ $10 \mathrm{pF} \leq \mathrm{Cap}<30 \mathrm{pF}, \mathrm{Q} \geq 275+2.5 \mathrm{C}$ Cap $<10 \mathrm{pF}, \mathrm{Q} \geq 200+10 \mathrm{C}$ - I.R.: $\geq 1 G \Omega$		
16.	ESR	- The ESR should be measured at room temperature and tested at frequency $1 \pm 0.1 \mathrm{GHz}$.	01005	0505	0603
			$\begin{gathered} 0.2 \mathrm{pF} \leq C \mathrm{Cap} \leq 1 \mathrm{pF}:<700 \mathrm{~m} \Omega / \mathrm{pF} \\ 1 \mathrm{pF}<C a p \leq 2 \mathrm{pF}:<600 \mathrm{~m} \Omega \\ 5 \mathrm{pF}<\mathrm{Cap} \leq 10 \mathrm{pFF}<300 \mathrm{~m} \Omega \\ 10 \mathrm{pF}<\mathrm{Cap} \leq 22 \mathrm{pF}<350 \mathrm{~m} \Omega \\ 2 \mathrm{pF}<\mathrm{Cap} \leq 5 \mathrm{pF}: \leq 500 \mathrm{~m} \Omega \end{gathered}$	$0.4 \mathrm{pF} \leq \mathrm{Cap}<1.0 \mathrm{pF}:<1500 \mathrm{~m} \Omega$ 1.0pF \leq Cap $<10 \mathrm{pF}:<250 \mathrm{~m} \Omega$ $10 \mathrm{pF} \leq \mathrm{Cap} \leq 100 \mathrm{pF}:<200 \mathrm{~m} \Omega$	$0.1 \mathrm{pF} \leq \mathrm{Cap} \leq 1 \mathrm{pF}:<1500 \mathrm{~m} \Omega$ $1 \mathrm{pF}<\mathrm{Cap} \leq 10 \mathrm{pF}:<250 \mathrm{~m} \Omega$ $10 \mathrm{pF}<\mathrm{Cap} \leq 220 \mathrm{pF}:<200 \mathrm{~m} \Omega$
			0201	0402	0805
			$0.1 \mathrm{pF} \leq \mathrm{Cap} \leq 1 \mathrm{pF}:<350 \mathrm{~m} \Omega / \mathrm{pF}$ $1 \mathrm{pF}<\mathrm{Cap} \leq 5 \mathrm{pF}:<300 \mathrm{~m} \Omega$ $5 \mathrm{pF}<\mathrm{Cap} \leq 22 \mathrm{pF}:<250 \mathrm{~m} \Omega$	$0.1 \mathrm{pF} \leq \mathrm{Cap} \leq 1 \mathrm{pF}:<350 \mathrm{~m} \Omega / \mathrm{pF}$ $1 \mathrm{pF}<\mathrm{Cap} \leq 5 \mathrm{pF}:<300 \mathrm{~m} \Omega$ $5 \mathrm{pF}<\mathrm{Cap} \leq 100 \mathrm{pF}:<250 \mathrm{~m} \Omega$	$\begin{gathered} 0.3 \mathrm{pF} \leq \mathrm{Cap} \leq 1 \mathrm{pF}:<1500 \mathrm{~m} \Omega \\ 1 \mathrm{pF}<\mathrm{Cap} \leq 10 \mathrm{pF}:<250 \mathrm{~m} \Omega \\ \text { Cap }>10 \mathrm{pF}:<200 \mathrm{~m} \Omega \end{gathered}$
		- The ESR should be measured at room temperature and tested at frequency $500 \pm 50 \mathrm{MHz}$	- 0201, 22pF \leq Cap $\leq 33 p F:<300 m \Omega$ - 1111, 100pF<Cap $\leq 1000 p F:<150 m \Omega$		

- TAPE \& REEL DIMENSIONS

SIZE		01005, 0201, 0402, 0505, 0603, 0805, 1111
REEL SIZE	$13.0+0.5 /-0.2$	$13^{\prime \prime}$ REEL
C	$8.4+1.5 /-0$	$13.0+0.5 /-0.2$
W1	178.0 ± 0.10	$8.4+1.5 /-0$
A	$60.0+1.0 /-0$	330.0 ± 1.0
N		100 ± 1.0

SIZE	01005	0201	0402	0505	0603	0805	1111
THICKNESS	V	L	N	J	S	S	
A_{0}	$13.0+0.5 /-0.2$	0.37 ± 0.03	0.62 ± 0.05	<1.90	$1.00 \pm 0.05 /-0.1$	1.50 ± 0.10	<3.05
$\mathrm{~B}_{0}$	0.45 ± 0.05	0.67 ± 0.03	1.12 ± 0.05	<1.90	1.80 ± 0.10	2.30 ± 0.10	<3.80
T	≤ 0.50	0.42 ± 0.03	0.60 ± 0.05	0.23 ± 0.1	0.95 ± 0.05	0.95 ± 0.05	0.23 ± 0.1
$\mathrm{~K}_{0}$	-	-	-	<1.50	-	-	<2.50
W	8.00 ± 0.30	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.30	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.30
P_{0}	4.00 ± 0.10						
$10 \times P_{0}$	40.00 ± 0.10	40.00 ± 0.10	40.00 ± 0.20				
P_{1}	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
P_{2}	2.00 ± 0.05						
D_{0}	$1.50+0.1 /-0$	1.55 ± 0.05	1.55 ± 0.05	$1.50+0.1 /-0$	1.55 ± 0.05	1.55 ± 0.05	$1.50+0.1 /-0$
D_{1}	-	-	-	1.00 ± 0.10	-	-	1.00 ± 0.10
E	1.75 ± 0.10	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.10	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.10
F	3.50 ± 0.05						

- Storage and handuing Conditions

1 - To store products at 5 to $40^{\circ} \mathrm{C}$ ambient temperature and 20 to 70%. related humidity conditions
2 - The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed

Cautions:
a. Don't store products in a corrosive environment such as sulfide, chloride gas, or acid. It may cause oxidization of electrode, which easily be resulted in poor soldering.
b. To store products on the shelf and avoid exposure to moisture.
c. Don't expose products to excessive shock, vibration, direct sunlight and so on.

- RECOMMENDED SOLDERING CONDITIONS

The lead-free termination MLCCs are not only to be used on SMT against lead-free solder paste, but also suitable against lead-containing solder paste. If the optimized solder joint is requested, increasing soldering time, temperature and concentration of N 2 within oven are recommended.

Recommeded reflow soldering profile for SMT process with SnAgCu series paste.

Recommeded wave soldering profile for SMT process with SnAgCu series solder.

