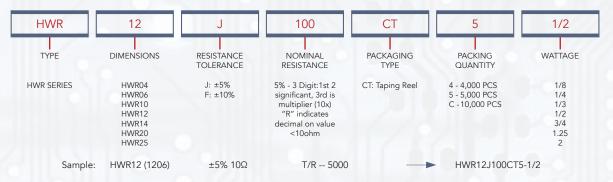
HIGH-PRECISION ANTI-SURGE THICK FILM CHIP RESISTOR - HWR SERIES -

This specification for approval relates to High-Precision Anti- Surge Thick Film Chip Resistors (Lead Free) manufactured by CAL-CHIP. The test items follow the test standard of AEC-Q200 Grade 4.



TYPE DESIGNATION

The type designation shall be in the following form:

TYPE	RESISTANCE TOLERANCE	NOMINAL RESISTANCE
HWR12 (1206)	F, J	10 Ω

■ PART NUMBERING GUIDE

RATINGS

TYPE	HWR04 (0402)	HWR06 (0603)	HWR10 (0805)	HWR12 (1206)	HWR14 (1210)	HWR20 (2010)	HWR25 (2512)
POWER RATING	1/8W	1/4W	1/3W, 1/2W	1/2W	3/4W	1.25W	2W
MAX. WORKING VOLTAGE	50 V	50 V	150 V	200 V	200 V	400 V	500 V
MAX OVERLOAD VOLTAGE	100 V	100 V	300 V	400 V	500 V	800 V	1000 V
DIELECTRIC WITHSTANDING VOLTAGE	100 V	300 V	500 V				
TEMPERATURE RANGE	69		-55	5°C ~ +155°C	M		
AMBIENT TEMPERATURE				70°C		10	

NOMINAL RESISTANCE

Effective figures of nominal resistance shall be in accordance:

E-24 values – these are preferred and will have standard MOQ

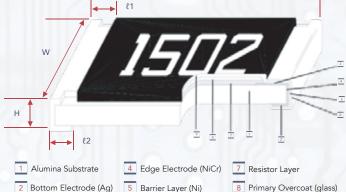
E-96 values – are available on case by case basis and availability and MOQ need to be confirmed with factory first

VOLTAGE RATING

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-waveroot-mean-square (RMS) alternating-current (AC) continuous working voltage at commercialline frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{PXR}$$

Note: Max. Working Voltage or √P X R whichever is lesser

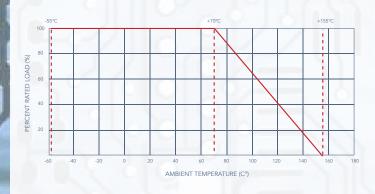

Max. Overload Voltage or 2.5 √P X R whichever is lesser

Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (volt)

P = Power Rating (watt)

R = Nominal Resistance (ohm)

TVDE	DIMENSION (MM)								
TYPE	L	W	н	٤1	£ 2				
HWR04 (0402)	1.00 ± 0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10				
HWR06 (0603)	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20				
HWR10 (0805)	2.00 ± 0.15	1.25 + 0.15 - 0.10		0.40 ± 0.20	0.40 ± 0.20				
HWR12 (1206)	3.10 ± 0.15	1.55 + 0.15 - 0.10	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20				
HWR14 (1210)	3.10 ± 0.10	2.60 ± 0.20		0.50 ± 0.25					
HWR20 (2010)	5.00 ± 0.10	5.00 ± 0.10 2.50 ± 0.20		0.60 ± 0.25	0.50 ± 0.20				
HWR25 (2512)	6.35 ± 0.10	3.20 ± 0.20		0.00 ± 0.23					

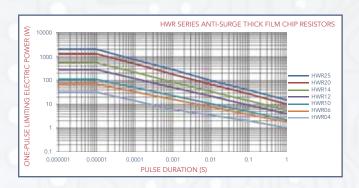


Top Elctrode (Ag-pd)

POWER RATING AND DIMENSIONS

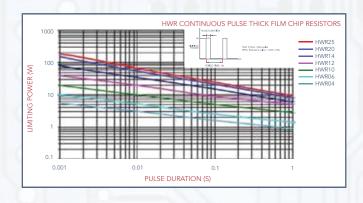
6 External Electrode (Sn) 9 Secondary Overcoat (Epoxy)

Power rating: Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70°. For temperature in excess of 70°C, The load shall be derate as shown in figure 1.



TYPE			RESISTANCE RANGE	T.C.R. (PPM / °C)	STANDARD SERIES			
			1Ω ~ 10ΜΩ	±400	4			
HWR04 (0402)	1/8 W		10.1Ω ~ 100Ω	±200				
	102,		100.1Ω ~ 10ΜΩ	±100				
HWR06 (0603)	1/4 W	w	40, 40,40					
HWR10 (0805)	1/3 W	±5%	1Ω ~ 10ΜΩ		±5%; E-24 ±1%; E-96			
HWR12 (1206)	1/2 W	±1%	0.40 4040	. 100				
HWR14 (1210)	3/4 W		0.1Ω ~ 10ΜΩ	±100				
HWR20 (2010)	1.25 W		1Ω ~ 10ΜΩ					
HWR25 (2512)	2W		0.1Ω ~ 10ΜΩ					




CURVE OF PULSE DURATION

PULSE WITHSTANDING CAPACITY (SINGLE PULSE)

■ PULSE WITHSTANDING CAPACITY (CONTINUOUS PULSE)

MARKING

- Resistors
 - A. Chip Resistors type HWR04 No marking
 - B. Standard E-96 series values(±1% tolerance) of HWR06 size. Due the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the following multiplier & resistance code.

MULTIPLIER CODE

CODE	А	В	С	D	Е	F	G	Н	Х	Υ	Z
MULTIPLIER	10	10	10	10	10	10	10	7 10	-1 10	-2 10	-3 10

CODING FORMULA EXAMPLE $10.2K\Omega = 102 \quad X \quad 10^2 \quad \Omega = 02C$ $XX \qquad X \qquad X \qquad 33.2\Omega = 332 \quad X \quad 10^{-1} \quad \Omega = 51X$ Resistance Code Multiplier Code

VALUE	CODE	VALUE	CODE	VALUE	CODE	VALUE	CODE	VALUE	CODE
100	01	162	21	261	41	422	61	681	81
102	02	165	22	267	42	432	62	698	82
105	03	169	23	274	43	442	63	715	83
107	04	174	24	280	44	453	64	732	84
110	05	178	25	287	45	464	65	750	85
113	06	182	26	294	46	475	66	768	86
115	07	187	27	301	47	487	67	787	87
118	08	191	28	309	48	499	68	806	88
121	09	196	29	316	49	511	69	825	89
124	10	200	30	324	50	523	70	845	90
127	11	205	31	332	51	536	71	866	91
130	12	210	32	340	52	549	72	887	92
133	13	215	33	348	53	562	73	909	93
137	14	221	34	357	54	576	74	931	94
140	15	226	35	365	55	590	75	953	95
143	16	232	36	374	56	604	76	976	96
147	17	237	37	383	57	619	77		
150	18	243	38	392	58	634	78		
154	19	249	39	402	59	649	79		
158	20	255	40	412	60	665	80		

*Marking for HWR06 E-96 series, the resistance value that no have multiplier code indicate marking follow this:

The first two digits are significant figures of resistance and the third one denoted number of zeros and under line the marking letters.

Example:

1.2KΩ

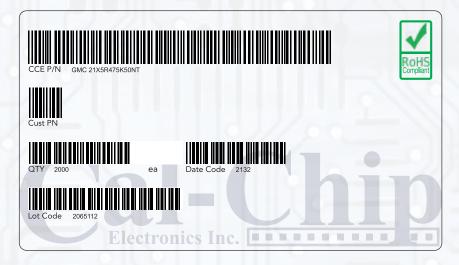
MARKING

C. Marking for E-96 series in HWR10, HWR12, HWR1, HWR20, HWR25 size: 4 Digits*The first 3 digits are singnificant figures of resistance and the 4th digit denotes number of zeros.

1000ΚΩ

Example: 1003

*For ohmic values below 100 Ω , letter"R" is for decimal point.


D. Marking for E-24 series in HWR06, HWR10, HWR12, HWR14, HWR20, HWR25 size: 3 Digits *The first two digits are significant figures of resistance and the third digit denoted number of zeros

*For ohmic values below 10 Ω , letter"R" is for decimal point.

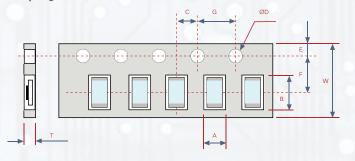
- Label shall be marked with the following item:
 - A. Nominal Resistance and Resistance Tolerance
 - B. Quantity
 - C. Part No.
 - D. Lot No.

PERFORMANCE SPECIFICATION

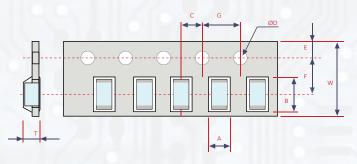
Anti- Surge Thick Film Chip Resistors (Lead Free) AEC-Q200 Compliant

CHARACTERISTICS	LIMITS	TEST METHODS
Operational Life	Resistance change rate is $\pm 1\%$: $\pm (1\%+0.1\Omega)$ Max. $ \pm 5\%$: $\pm (3\%+0.1\Omega)$ Max.	125°C, at35% of operating power, 1000H (1.5 hours "ON", 0.5 hour "OFF"). (MIL-STD-202 Method 108)
Temperature Coefficient	HWR04 1Ω~10Ω: ± 400 PPM/°C 10.1Ω~100Ω: ± 200 PPM/°C >100Ω: ± 100 PPM/°C HWR06, HWR10, HWR12, HWR14, HWR20, HWR25 ± 100 PPM/°C	4.8 Natural resistance change per temp. degree centigrade. R2-R1 X10° (PPM/°C) R1 (t2-t1) R1: Resistance value at room temperature (T1) R2: Resistance value at room temp. plus 100°C (T2) Test pattern: room temp. (T1), room temp. +100°C(T2)
External Visual	No Mechanical Damage	Electrical test not required.Inspect device construction, markin and workmanship (MIL-STD-883 Method 2009)
Physical Dimension	Reference 2.0 Dimension Standards	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required. (JESD22 MH Method JB-100)
Resistance to Solvent	Marking Unsmeared	Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents. (MIL-STD-202 Method 215)
Terminal Strength	Not broken	Force of 1.8kg for 60 seconds. (MIL-STD-202 Method 213)
High Temperature Exposure (Storage)	Resistance change rate is ±(1%+0.1W) max	1000hrs. at T=155°C.Unpowered. Measurement at 24±2 hours after test conclusion. (MIL-STD-202 Method 108)
Temperature Cycling	Resistance change rate is ±1%: ± (1.0%+0.1Ω) Max. ±5%: ± (3.0%+0.1Ω) Max.	1000 Cycles (-55°C to +155°C). Measurement at 24±2 hours after test conclusion. (JESD22 Method JA-104)
Solderability	95% coverage Min.	For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions: (J-STD-002)
Soldering Temperature	Electrical characteristics shall be satisfied. Without distinct	Wave soldering condition: (2 cycles Max.) Pre-heat: 100 ~ 120°C, 30 ± 5 sec. Suggestion solder temp.: 235 ~ 255°C 10 sec. (Max.) Peak temp.: 260°C Reflow soldering condition: (2 cycles Max.) Pre-heat: 150 ~ 180°C, 90 ~ 120 sec. Suggestion solder temp.: 235 ~ 255°C, 20 ~ 40 sec. Peak temp.: 260°C
Reference	deformation in appearance. (95 % coverage Min.)	Hand soldering condition: The soldering iron tip temperature should be less than 300°C and maximum contract time should be 5 sec.
Mechanical Shock	Resistance change rate is ±1%: ± (1.0%+0.1Ω) Max. ±5%: ± (3.0%+0.1Ω) Max.	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration (D) is 6. (MIL-STD-202 Method 213)
Vibration	Resistance change rate is $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ Max. $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max.	5g's for 20 min., 12cycle each of 3 orientations. Note: Use 8"*5"PCB. 031" thick 7 secure points (onone) long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10-2000Hz. (MIL-STD-202 Method 204)
Biased Humidity	Resistance change rate is ±1%: ± (1.0%+0.1Ω) Max. ±5%: ± (3.0%+0.1Ω) Max.	10% rated power, 85°C/85%RH, 1000H,Measurement at 24 hours after test conclusion. (MIL-STD-202 Method 103)
ESD	Resistance change rate is ± (10%+0.1Ω)max	With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of ±500V,±1KV, ±2KV, ±4KV, ±8KV, The electrometer reading shall be within ±10% for voltages from 500V to 800V. (AEC-Q200-002 or ISO/DIS 10605)

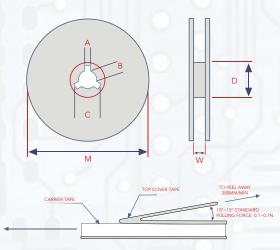
PERFORMANCE SPECIFICATION


Anti- Surge Thick Film Chip Resistors (Lead Free) AEC-Q200 Compliant

CHARACTERISTICS	LIMITS	TEST METHODS
Flammability		V-0 or V-1 are acceptable. Electrical test not required. (UL-94)
Board Flex	±1%: ± (1.0%+0.1Ω) Max. ±5%: ± (3.0%+0.1Ω) Max.	60 seconds minimum holding time. (JIS-C-6429)
Flame Retardance	No Flame	Temperature sensing at 500°C, Voltage power subjected to 32VDC current clamped up to 500ADC and decreased in 1.0VDC/hour. (AEC-Q200-001)
Resistance to Soldering Heat	Resistance change rate is $\pm (1\%+0.05\Omega)$ max.	Condition B No per-heat of samples. Note: Single Wave Solder-Procedure 2 for SMD and Procedure 1 for Leaded with solder within 1.5mm of device body. (MIL-STD-202 Method 210)


PACKAGING

- Taping Dimension (MM)


TYPE	A ± 0.2	B ± 0.2	C ± 0.05	ØD +1 -0	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ± 0.1
HWR04	0.65 ± 0.1	1.2 ± 0.1	7		1.75 3.5		4.0	8.0	0.42 ± 0.05
HWR06	1.10	1.90							0.67
HWR10	1.65	2.40	2.0	1.5		3.5			0.04
HWR12	2.00	3.60							0.81
HWR14	2.80	3.50							0.75

- Embossed Taping

TYPE	A ± 0.2	B ± 0.2	C ± 0.05	ØD +1 -0	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	ØD1 +1 -0	T ± 0.1
HWR20	2.90	5.60	2.0	2.0 1.5	1.75	5.5	4.0	12.0	1.5	1.0
HWR25	3.50	6.70								

- Peeling Strength of Top Cover Tape
- Test Condition: 0.1 to 0.7 N at a peel-off speed of 300mm / min

TYPE	PACKAGING	QTY PER REEL	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
HWR04		10,000 pcs		13				
HWR06					21	60	178	
HWR10	Paper	5,000 pcs	2					10
HWR12								
HWR14								
HWR20	Embossed	4.000						13.8
HWR25	Empossed	4,000 pcs						13.0

ENVIRONMENT RELATED SUBSTANCE

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product. This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

STORAGE CONDITION (MSL1)

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}\text{C} \pm 10^{\circ}\text{C}$ and a relative humidity of $60\%\text{RH} \pm 10\%\text{RH}$, chemical and dust free atmosphere

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

- 1. In salty air or in air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂
- 2. In direct sunlight

This production is used for automotive electronics, Cal-Chip Electronics will not be responsible for any damage, expense or loss caused by the use of this specification in any special environment. This series of product are suitable for automotive electronics applications, as show below, if there are other application, you need to confirm with Cal-Chip Electronics whether they are applicable:

- a. Control unit for informatiom, entertainment, navigation, audio;
- b. Control unit for comfortable doors, windows, seat;
- c. Control unit for internal lighting.

LEGAL DISCLAIMER

The information provided in the catalog/data sheet is for the purpose of describing product specifications only, and Cal-Chip Electronics and its affiliates (hereinafter collectively referred to as "Cal-Chip Electronics") hereby disclaim any liability for any errors, inaccuracies or incompleteness contained in any product-related information (including but not limited to product specifications, datasheets, pictures, graphics). Cal-Chip Electronics reserves the right to modify this content without prior notice. Thank you for your understanding.

Cal-Chip Electronics makes no representation, warranty, and guarantee as to the fitness of its products for any particular purpose or the continuing production of any Cal-Chip Electronics products.

To the maximum extent permitted by law, Cal-Chip Electronics disclaims

- (i) any and all liability arising out of the application or use of any Cal-Chip Electronics product,
- (ii) any and all liability, including without limitation special, consequential or incidental damages, and
- (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Cal-Chip Electronics products are not intended for use in medical, life-saving, or life-sustaining equipment, nor are they intended for any other purpose where product failure or mismanagement could endanger life or cause harm to or death to the human body. Customers use or sell Cal-Chip Electronics products for the above purposes at their own risk. If need products for such purposes, please be sure to consult with our company to obtain relevant information about the applicable products.

Regardless of the application of Cal-Chip Electronics products, it is recommended to carry out safety tests while using measures such as protective circuits and redundant circuits to protect the safety of equipment.

